PART 1

1.3 Segment: Functions; Graphs of Power Functions

1.3.1 Functions

Suppose s is the setting on an industrial oven dial and T is the internal oven temperature. We would have pairs (s, T) that dial settings and temperatures that occur at those settings. The relationship between s and T would be modelled by an equation in s and T.

If the model was a general equation, such as $900s^2 - T^2 = -1600$, then setting the dial at 1 would give temperatures according to $900 - T^2 = -1600$, $T^2 = 2500$, $T = \pm 50$. Setting the dial at 1 could produce a temperature of -50 or a temperature of 50. In this model, the dial setting does not determine exactly one temperature; T is not a function of s.

We desire a model where the dial setting determines exactly one oven temperature; T is a function of s. Such a model might be $T = 30s^2 + 50$ where T is a function of s; each value of s determines a value for T.

Given an equation for x and y, y is a function of x if each value of x determines exactly one value for y. If y is a function of x then any vertical line will intersect the graph for the equation of x and y in at most one point. Since, y is a single value determined by x, we write $y = f(x)$ where $f(x)$ is equal to an expression in x.

18 Copyright 2011. All rights reserved.
PART 1

Some functions are given in function form, e.g., \(y = 3x^2 - 3 \). Other functions are given as an equation, but not in function form, e.g., \(3x - 5y = 13 \). We may write \(3x - 5y = 13 \) with \(y \) as a function of \(x \): \(y = \frac{3x - 13}{5} \).

Example 10

\[
f(x) = 3x^2 - 2x + 1
\]
\[
f(2) = 3(2)^2 - 2(2) + 1 = 9
\]
\[
f(x + 2) = 3(x + 2)^2 - 2(x + 2) + 1 = 3x^2 + 10x + 9
\]
\[
f(\Delta x) = 3(\Delta x)^2 - 2(\Delta x) + 1
\]
\[
f(x + \Delta x) = 3 (x + \Delta x)^2 - 2 (x + \Delta x) + 1 = 3x^2 + 6x\Delta x + (\Delta x)^2 - 2x - 2\Delta x + 1
\]
\[
f(x + \Delta x) - f(x) = (3x^2 + 6x\Delta x + (\Delta x)^2 - 2x - 2\Delta x + 1) - (3x^2 - 2x + 1)
\]
\[
= 6x\Delta x + (\Delta x)^2 - 2\Delta x
\]
\[
\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{6x\Delta x + (\Delta x)^2 - 2\Delta x}{\Delta x} = \frac{\Delta x(6x + \Delta x - 2)}{\Delta x} = 6x + \Delta x - 2.
\]

The *domain* of \(y = f(x) \) is the set of values \(x \) for which \(f(x) \) is defined. For \(y = 3x^2 - 6x + 5 \), \(3x^2 - 6x + 5 \) is defined for all real numbers \(x \), so the domain is the set of all real numbers. In interval notation, the set of real numbers can be written as \((-\infty, \infty)\). For \(y = \sqrt{x - 1} \), \(\sqrt{x - 1} \) is defined when \(x - 1 \geq 0, x \geq 1 \), so the domain is the set of real number greater than or equal to one. In interval notation, the set of number where \(x \geq 1 \) can be written \([1, \infty)\). When \(x \) is in the domain of \(y = f(x) \), there
PART 1

is a point on the graph either above or below the value x on the x-axis.

The range of $y = f(x)$ is the set of values y that can be computed from $f(x)$.

For $y = 3x^2 - 6x + 5$, the graph is a parabola that opens upward from the vertex at $x = 1$. So $y = f(1) = 2$ is in the range and any $y \geq 2$ is in the range (in interval notation $[2, \infty)$). For $y = \sqrt{x - 1}$, $y = \sqrt{x - 1} \geq 0$ and $0 = \sqrt{1 - 1}$. The range is the set of numbers greater than or equal to zero (in interval notation $[0, \infty)$).

We obtain the inverse of $y = f(x)$ by interchanging x and y: $x = f(y)$ and solve for y to get $y = g(x)$. A test for inverses is the fact that $f(g(x)) = x = g(f(x))$.

Example 11

For $x \geq 1$, $y = f(x) = x^2 + 1$ and $y = g(x) = \sqrt{x - 1}$ are inverses.

Check: $f(g(x)) = f(\sqrt{x - 1}) = (\sqrt{x - 1})^2 + 1 = x - 1 + 1 = x$ and
$g(f(x)) = g(x^2 + 1) = \sqrt{x^2 + 1 - 1} = x$.

Example 12

Find the inverse of $y = 3x - 7$.

Interchange x and y: $x = 3y - 7$.

Solve for y: $x = 3y - 7$, $3y - 7 = x$, $3y = x + 7$, $y = \frac{x + 7}{3}$.
1.3.2 Power Functions and Graphs

A power function is a function of the form $y = cx^n$ where c is a non-zero constant and n is real number. Some examples with $c = 1$ are $y = x^3$, $y = x^4$, $y = x^{1/3}$, $y = x^{-2}$.

When $n = 0$, $y = c$ is a horizontal line.

When $n = 1$, we have already seen that $y = cx$ is a straight line with slope c and passing through $(0, 0)$.

We have also seen that, when $n = 2$, $y = cx^2$ is a parabola with vertex $(0, 0)$ opening upward if $c > 0$ and downward if $c < 0$.

When n is a whole number greater than two, for $x \geq 0$, $y = cx^n$ has a shape similar to a parabola. For $x \leq 0$, $y = cx^n$ is a reflection of the graph when $x \geq 0$. When n is even the reflection is oriented the same—up or down, when n is odd the reflection is opposite—up or down.
PART 1

When \(n \) is a negative whole number, the graph of \(y = x^n \) is similar to a hyperbola is shape. The graph has no intercepts, but approaches the \(x \)-axis when \(x \) becomes larger (\(y = 0 \) is a horizontal asymptote) and approaches the \(y \)-axis when \(y \) becomes larger (\(x = 0 \) is a vertical asymptote).

\[
y = x^{-3} = \frac{1}{x^3}
\]

Now consider \(y = x^{1/m} \) where \(m \) is a positive whole number greater than one. Let's use \(m = 3 \) for the moment. Then \(y = x^{1/3} = \sqrt[3]{x} \) (the cube root of \(x \)). Also, the inverse is \(x = y^{1/3} \), \(x^3 = (y^{1/3})^3 = y \). The graph of \(y = x^{1/3} \) is a reflection of the graph.
of $y = x^3$ through a 45° line.

Example 13

Graph $y = -x^5$

The graph is a reflection of $y = x^5$ and has the basic shape of $y = x^3$. Two points should be sufficient to guide our graph:
Example 14

Graph $y = (x - 2)^5 - 3$

The graph is a duplicate of $y = x^5$ with the point $(0, 0)$ moved to
Example 15

Graph $y = \sqrt{x + 2}$.

The graph is a duplicate of $y = \sqrt{x}$ with the point $(0,0)$.
moved to $(-2, 0)$.

The graph of $y = |f(x)|$ is obtained from the graph of $y = f(x)$ by reflecting any part of the graph below the x-axis through the x-axis.
PART 1

\[y = 5 + 7x - 2x^2 \]

\[y = |5 + 7x - 2x^2| \]