3.3.3 Basic Rules for Limits

The following rules hold for limits when the quantities exist:

\[
\lim_{x \to \beta} f(x) + \lim_{x \to \beta} g(x) = \lim_{x \to \beta} (f(x) + g(x))
\]

\[
\lim_{x \to \beta} f(x) \cdot \lim_{x \to \beta} g(x) = \lim_{x \to \beta} (f(x) \cdot g(x))
\]

\[
\frac{\lim_{x \to \beta} f(x)}{\lim_{x \to \beta} g(x)} = \lim_{x \to \beta} \left(\frac{f(x)}{g(x)} \right).
\]

Example 21

Let \(\lim_{x \to b} f(x) = 3 \) and \(\lim_{x \to b} g(x) = -4 \).

\[
\lim_{x \to b} (f(x) + 3g(x)) = 3 + 3(-4) = -9
\]

\[
\lim_{x \to b} \left(\frac{7f(x)}{5g(x)} \right) = \frac{7(3)}{5(-4)} = -\frac{21}{20}
\]

3.4 Segment: Limits at Infinity; Continuity

3.4.1 Limits at Infinity

We have seen functions \(f(x) \) that tend to become large without bound near a value of \(x \) and assigned the concept of infinity to this situation, \(\lim_{x \to 3} f(x) = \infty \).

Now let \(x \) become large without bound, \(x \to \infty \), and look at the tendency of \(f(x) \): \(\lim_{x \to \infty} f(x) \).

Example 22
PART 3

\(y = f(x) = 2x^3 \) grows without bound when \(x \) grows without bound:

\[
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} 2x^3 = \infty.
\]

Example 23

\(y = f(x) = \frac{3}{x} \) gets smaller and smaller (close to zero) as \(x \) gets larger and larger:

\[
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3}{x} = 0.
\]

Example 24

\[
\lim_{x \to \infty} 2 - \frac{3}{x} = 2 - 0 = 2.
\]

For the polynomial \(x^3 - 2x + 5 \), when we substitute a very large value of \(x \), such as, \(10^6 \), the value is almost the same as just the leading term \(x^3 \): \((10^6)^3 - 2(10^6) + 5 = 9999999998000005\), \((10^6)^3 = 10000000000000000\), these quantities differing only after 11 places. The point is, for very large values of \(x \), a polynomial is very nearly the same as its leading term. So for limits, such as, \(\lim_{x \to \infty} \frac{3x^2 - 2x + 5}{6x^2 + 3x - 7} \), we may replace the numerator and denominator by their leading terms, \(\lim_{x \to \infty} \frac{3x^2 - 2x + 5}{6x^2 + 3x - 7} = \lim_{x \to \infty} \frac{3x^2}{6x^2} = \lim_{x \to \infty} \frac{1}{2} = \frac{1}{2} \). It is very, very important to only use this process when \(x \to \infty \) or \(x \to -\infty \).

Example 25

\[
\lim_{x \to \infty} \frac{2x + 5}{3 - 7x} = \lim_{x \to \infty} \frac{2x}{-7x} = \lim_{x \to \infty} \frac{2}{-7} = -\frac{2}{7}.
\]
PART 3

Example 26

\[
\lim_{x \to \infty} \frac{2x^2 + 2x - 1}{5x + 3} = \lim_{x \to \infty} \frac{2x^2}{5x} = \lim_{x \to \infty} \frac{2x}{5} = \infty.
\]

Example 27

\[
\lim_{x \to \infty} \frac{2x^2 - 6x + 5}{6x^4 - 7x - 3} = \lim_{x \to \infty} \frac{2x^2}{6x^4} = \lim_{x \to \infty} \frac{1}{3x^2} = 0.
\]

3.4.2 Continuity

When we look at the graph of a function like \(y = 2x^2 - 4 \), there are no holes or jumps. We can move continuously across any point on the graph.
A function $y = f(x)$ is *continuous* at $x = b$ if $f(b) = \lim_{x \to b} f(x)$, the function is defined at b and the approach to b matches the value at b.

Polynomials, rational functions, roots, exponentials, and logarithms are continuous at each point where they are defined, we calculate the limit merely by evaluating the function.

Example 28

The function $f(x) = \frac{2x-3}{x+1}$ is continuous at each point where it is
defined: $x \neq -1$. $f(-1)$ is not defined so f cannot be continuous, furthermore $\lim_{x \to -1} f(x)$ does not exist. The function f is continuous on the interval $(-\infty, -1)$ and on the interval $(-1, \infty)$.

Example 29

The function $f(x) = \frac{2x + 2}{x + 1}$ is continuous at each point where it is defined: $x \neq -1$. $f(-1)$ is not defined so f cannot be continuous, but $\lim_{x \to -1} f(x) = 2$ does exist. The function f is continuous on
PART 3

the interval \((-\infty, -1)\) and on the interval \((-1, \infty)\). The graph of \(f\) has a hole at \(x = -1\).

Example 30

The function \(f(x) = \frac{|2x+2|}{x+1}\) is continuous at each point where it is defined: \(x \neq -1\). \(f(-1)\) is not defined so \(f\) cannot be continuous, but \(\lim_{x \to -1^-} f(x) = -2\) \(\lim_{x \to -1^+} f(x) = 2\) The function \(f\) is continuous on the interval \((-\infty, -1)\) and on the interval \((-1, \infty)\). The graph
PART 3

of \(f \) has a jump at \(x = -1 \).

For each \(x \), the greatest integer function \(g(x) = \lfloor x \rfloor \) is defined to be the greatest integer less than \(x \).

\[
\lfloor 2.3 \rfloor = 2, \lfloor 0.3 \rfloor = 0, \lfloor \pi \rfloor = 3, \lfloor -2.3 \rfloor = -3, \lfloor -\pi \rfloor = -4, \lfloor 2 \rfloor = 2, \lfloor -2 \rfloor = -2, \text{ and } \lfloor 0 \rfloor = 0.
\]
\[
\lim_{x \to -1^-} [x] = -2, \quad \lim_{x \to -1^+} [x] = -1, \quad \lim_{x \to 3^-} [x] = 2, \quad \lim_{x \to -1^+} [x] = 3
\]

The function \(g(x) = [x] \) is not continuous at each integer, but is continuous between each integer; it is continuous on the intervals \((n, n + 1) \) for each integer \(n \).