Ordered Fields: Axioms and Basic Properties

Dr. Lance Nielsen
Creighton University Department of Mathematics
Math 591 - Real Analysis
Outline

1. Field Axioms
2. Elementary Propositions
3. Ordered Fields
4. Simple Propositions Concerning Ordered Fields
5. Further Algebraic Structure
Outline

1. Field Axioms
2. Elementary Propositions
3. Ordered Fields
4. Simple Propositions Concerning Ordered Fields
5. Further Algebraic Structure
Outline

1. Field Axioms
2. Elementary Propositions
3. Ordered Fields
4. Simple Propositions Concerning Ordered Fields
5. Further Algebraic Structure
Outline

1. Field Axioms
2. Elementary Propositions
3. Ordered Fields
4. Simple Propositions Concerning Ordered Fields
5. Further Algebraic Structure
Outline

1. Field Axioms
2. Elementary Propositions
3. Ordered Fields
4. Simple Propositions Concerning Ordered Fields
5. Further Algebraic Structure
We let F be a set and we suppose that there are \textit{binary} operations $+$ and \cdot defined (well-defined) on F. We assume that:

- (1) $+$ and \cdot are commutative.
- (2) $+$ and \cdot are associative.
- (3) There is an element $1_F \in F$ such that $x \cdot 1_F = 1_F \cdot x = x$ for all $x \in F$.
- (4) There is an element $0_F \in F$ such that $0_F + x = x + 0_F = x$ for all $x \in F$.
We let F be a set and we suppose that there are binary operations $+$ and \cdot defined (well-defined) on F. We assume that:

- (1) $+$ and \cdot are commutative.
- (2) $+$ and \cdot are associative.
- (3) There is an element $1_F \in F$ such that $x \cdot 1_F = 1_F \cdot x = x$ for all $x \in F$.
- (4) There is an element $0_F \in F$ such that $0_F + x = x + 0_F = x$ for all $x \in F$.
Initial Setup and Axioms

We let F be a set and we suppose that there are binary operations $+$ and \cdot defined (well-defined) on F. We assume that:

1. $+$ and \cdot are commutative.
2. $+$ and \cdot are associative.
3. There is an element $1_F \in F$ such that $x \cdot 1_F = 1_F \cdot x = x$ for all $x \in F$.
4. There is an element $0_F \in F$ such that $0_F + x = x + 0_F = x$ for all $x \in F$.

We let F be a set and we suppose that there are *binary* operations $+$ and \cdot defined (well-defined) on F. We assume that:

- (1) $+$ and \cdot are commutative.
- (2) $+$ and \cdot are associative.
- (3) There is an element $1_F \in F$ such that $x \cdot 1_F = 1_F \cdot x = x$ for all $x \in F$.
- (4) There is an element $0_F \in F$ such that $0_F + x = x + 0_F = x$ for all $x \in F$.
Remark

The elements 1_F and 0_F are the multiplicative identity and the additive identity, respectively. We usually denote them by 0 and 1. It is easy to prove that these identities are unique.
(5) Given any $x \in F$ there is a $x' \in F$ such that $x \cdot x' = x' \cdot x = 1$. We denote x' by x^{-1} and call it the multiplicative inverse of x.

(6) Given any $x \in F$ there is a $x'' \in F$ such that $x'' + x = x + x'' = 0$. We denote x'' by $-x$ and call it the additive inverse of x.

(7) $x \cdot (y + z) = x \cdot y + x \cdot z$ for all $x, y, z \in F$.
(5) Given any \(x \in F \) there is a \(x' \in F \) such that \(x \cdot x' = x' \cdot x = 1 \). We denote \(x' \) by \(x^{-1} \) and call it the multiplicative inverse of \(x \).

(6) Given any \(x \in F \) there is a \(x'' \in F \) such that \(x'' + x = x + x'' = 0 \). We denote \(x'' \) by \(-x \) and call it the additive inverse of \(x \).

(7) \(x \cdot (y + z) = x \cdot y + x \cdot z \) for all \(x, y, z \in F \).
Field Axioms, Continued

- (5) Given any \(x \in F \) there is a \(x' \in F \) such that \(x \cdot x' = x' \cdot x = 1 \). We denote \(x' \) by \(x^{-1} \) and call it the multiplicative inverse of \(x \).

- (6) Given any \(x \in F \) there is a \(x'' \in F \) such that \(x'' + x = x + x'' = 0 \). We denote \(x'' \) by \(-x \) and call it the additive inverse of \(x \).

- (7) \(x \cdot (y + z) = x \cdot y + x \cdot z \) for all \(x, y, z \in F \).
A field is a set F with binary operations $+$ and \cdot that satisfy (1)–(7). In other words, a field is a commutative ring in which every non-zero element has a multiplicative inverse.
Proposition 1

For any $x \in F$, $x \cdot 0 = 0$.

Proof.

We have $x \cdot 0 = x \cdot (0 + 0) = x \cdot 0 + x \cdot 0$ and so
$0 = -(x \cdot 0) + (x \cdot 0) = -(x \cdot 0) + (x \cdot 0 + x \cdot 0) = 0 + x \cdot 0 = x \cdot 0$. \square
Proposition 2

Proposition

Let $x \in F \setminus \{0\}$. Then $(x^{-1})^{-1} = x$.

Proof.

Let x be a non-zero element of F. Since $x^{-1} \in F$, it has an inverse and so

$$1 = x^{-1} \cdot (x^{-1})^{-1}.$$

Hence we have

$$x \cdot 1 = x \cdot \left[x^{-1} \cdot (x^{-1})^{-1} \right] = (x^{-1})^{-1}$$

which finishes the proof.
We state the following without proof:

- \(\forall x, y \in F, (-x)y = -(xy) = x(-y). \)
- For \(x, y \in F \) (non-zero) we have \(\frac{x}{y} =: x \cdot y^{-1} \neq 0 \) and \(\left(\frac{x}{y} \right)^{-1} = \frac{y}{x}. \)
- For \(a, b \in F \setminus \{0\} \) we have \((ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} \).
We state the following without proof:

- $\forall x, y \in F, (-x)y = -(xy) = x(-y)$.
- For $x, y \in F$ (non-zero) we have $\frac{x}{y} =: x \cdot y^{-1} \neq 0$ and $\left(\frac{x}{y}\right)^{-1} = \frac{y}{x}$.
- For $a, b \in F \setminus \{0\}$ we have $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$.
Other Propositions

We state the following without proof:

- $\forall x, y \in F, (-x)y = -(xy) = x(-y)$.
- For $x, y \in F$ (non-zero) we have $\frac{x}{y} =: x \cdot y^{-1} \neq 0$ and $(\frac{x}{y})^{-1} = \frac{y}{x}$.
- For $a, b \in F \setminus \{0\}$ we have $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$.
We assume that \((F, +, \cdot)\) is a field.

Order Axiom

There is a subset \(F^+\) of \(F\), called the set of positive elements of \(F\) that satisfies

- If \(x, y \in F^+\), \(x + y, x \cdot y \in F^+\).
- Given any \(a \in F\), exactly one of the following is true:
 1. \(a \in F^+\)
 2. \(a = 0\)
 3. \(-a \in F^+\)
We assume that \((F, +, \cdot)\) is a field.

Order Axiom

There is a subset \(F^+\) of \(F\), called the set of positive elements of \(F\) that satisfies

- If \(x, y \in F^+\), \(x + y, x \cdot y \in F^+\).
- Given any \(a \in F\), exactly one of the following is true:
 1. \(a \in F^+\)
 2. \(a = 0\)
 3. \(-a \in F^+\)
Remark/Definition

Negative Elements of F

The negative elements of F are defined to be the subset $F \setminus (F^+ \cup \{0\})$ of F and are denoted by F^-.
Proposition 1

Proposition

If \(a \in F^+ \), then \(-a \in F^-\).

Proof.

If \(a \in F^+ \), then \(a \neq 0 \). Further, \(a \notin F^- \) and we cannot have \(-a \in F^+\). If we did have \(-a \in F^-\), then we would have \(-a + a = 0 \in F^+\), a contradiction.
Proposition 2

Proposition

\[1 \in F^+ \]

Proof.

Suppose that \(1 \in F^- \). Then \(-1 \in F^+ \). Let \(x \in F^+ \). Then \((-1)x \in F^+ \) and it follows that \(x + (-1)x \in F^+ \). Hence \(0 \in F^+ \), a contradiction.
We state the following without proof:

1. \(F^- \neq \emptyset \)

2. If \(a \neq 0 \) is in \(F \), then \(a \neq -a \).
We state the following without proof:

1. $F^- \neq \emptyset$

2. If $a \neq 0$ is in F, then $a \neq -a$.
Definition

Define \leq on F by $x \leq y$ if and only if $y - x \in F^+ \cup \{0\}$. The symbols $<$, $>$, and \geq are defined in the usual way.
Why we have a total order

That a field F that satisfies the order axiom is totally ordered follows from the following theorems (stated without proof).

Theorem

\leq on F satisfies: (1) $x \leq x$; (2) $x \leq y$ and $y \leq x$ imply that $x = y$; (3) $x \leq y$ and $y \leq z$ imply $x \leq z$.

Theorem

For any $a, b \in F$ exactly one of the following holds: (1) $a < b$; (2) $a = b$; (3) $a > b$.
Manipulation of Inequalities

Theorem

Let $a, b, c, d \in F$. Then

- $a > b$ and $c \geq d$ imply $a + c > b + d$.
- $a > b > 0$ and $c \geq d > 0$ imply $ac > bd$.
- $a > b$, $c < 0$ imply $ac < bc$.
Absolute Value

Definition

\[|a| = \begin{cases}
 a & \text{if } a \geq 0 \\
 -a & \text{if } a < 0
\end{cases} \]
Properties of Absolute Value

Theorem

1. $|a| = \max (a, -a)$
2. $|a| = |-a|$
3. $|ab| = |a| |b|$
4. $|a + b| \leq |a| + |b|$ (The triangle inequality)
5. $|a - b| \geq ||a| - |b||$
6. If $r > 0$, $|a - b| < r$ if and only if $a - r < b < a + r$.
Integer Multiples of Elements of F

Definition

Given a positive integer k, we define $ka := a + \cdots + a$.

From this definition follows:

Lemma

If $k \neq \ell$ are positive integers, then $ka \neq \ell a$.

Finally, we can show

Theorem

A totally ordered field F is infinite.